

100Gb/s QSFP28 SR4 150m Transceiver HX4X-CM1M2x

Features

- Up to 27.952 Gbps Data rate per channel
- Maximum link length of 150m links on OM4 multimode fiber
- High Reliability 850nm VCSEL technology
- Electrically hot-pluggable
- Support Digital Monitoring interface
- RoHS-10 compliant and lead-free
- Compliant with QSFP28 MSA with MPO connector
- Single +3.3V power supply
- Maximum power consumption 2.0W
- All-metal housing for superior EMI performance
- Case operating temperature Commercial: 0 ~ +70°C
 Extended: -10 ~ +80°C
 Industrial: -40 ~ +85°C

Applications

- Data Center
- Fiber channel
- Ethernet switches and router applications

Part Number	Data Rate (Gb/s)	Wavelength (nm)	Transmission Distance(m)	Temperature (°C) (Operating Case)
HX4X-CM1M2C	100	850	150	0~70 commercial
HX4X-CM1M2E	100	850	150	-10~80 Extended
HX4X-CM1M2I	100	850	150	-40~85 Industrial

Part Number Ordering Information

www.walsun.com

HX4X-CM1M2x V1.0

I. Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Max	Unit	Notes
Storage Temperature	Ts	-40	85	°C	
Power Supply Voltage	V _{CC}	-0.3	4.0	v	
Relative Humidity (non-condensation)	RH	5	95	%	
Damage Threshold	TH _d		5.0	dBm	

II. Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit	Notes
		0		70		commercial
Operating Case Temperature	Top	-10		80	°C	extended
		-40		85		Industrial
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	
Data Rate			100		Gb/s	
Control Input Voltage High		2		Vcc	V	
Control Input Voltage Low		0		0.8	V	
Link Distance (MMF)	D			150	m	50/125um

III. General Description

Walsun'100G QSFP28 SR4 optical transmitter portion of the transceiver incorporates a 4-channel VCSEL (Vertical Cavity Surface Emitting Laser) array, a 4-channel input buffer and laser driver, diagnostic monitors, control and bias blocks. For module control, the control interface incorporates a Two Wire Serial interface of clock and data signals. Diagnostic monitors for VCSEL bias, module temperature, transmitted optical power, received optical power and supply voltage are implemented and results are available through the TWS interface. Alarm and warning thresholds are established for the monitored attributes. Flags are set and interrupts generated when the attributes are outside the thresholds. Flags are also set and interrupts generated for loss of input signal (LOS) and transmitter fault conditions. All flags are latched and will remain set even if the condition initiating the latch clears and operation resumes. All interrupts can be masked and flags are reset by reading the appropriate flag register. The optical output will squelch for loss of input signal unless squelch is disabled. Fault detection or channel deactivation through the TWS interface will disable the channel. Status, alarm/warning and fault information are available via the TWS interface.

The optical receiver portion of the transceiver incorporates a 4-channel PIN photodiode array, a 4-channel TIA array, a 4-channel output buffer, diagnostic monitors, and control and bias blocks.

Diagnostic monitors for optical input power are implemented and results are available through the TWS interface. Alarm and warning thresholds are established for the monitored attributes. Flags are set and interrupts generated when the attributes are outside the thresholds. Flags are also set and interrupts generated for loss of optical input signal (LOS). All flags are latched and will remain set even if the condition initiating the flag clears and operation resumes. All interrupts can be masked and flags are reset upon reading the appropriate flag register. The electrical output will squelch for loss of input signal (unless squelch is disabled) and channel de-activation through TWS interface. Status and alarm/warning information are available via the TWS interface.

IV. Pin Assignment and Pin Description

Top Side

Bottom Side

Figure1. Diagram of host board connector block pin numbers and names

Pin	Symbol	Name/Description	Notes
1	GND	Transmitter Ground (Common with Receiver Ground)	1
2	Tx2n	Transmitter Inverted Data Input	
3	Tx2p	Transmitter Non-Inverted Data output	
4	GND	Transmitter Ground (Common with Receiver Ground)	1
5	Tx4n	Transmitter Inverted Data Input	
6	Tx4p	Transmitter Non-Inverted Data output	
7	GND	Transmitter Ground (Common with Receiver Ground)	1
8	ModSelL	Module Select	

Walsun Technology Co., Ltd

www.walsun.com

Professional high-speed optical transceiver module overall solution provider

9	ResetL	Module Reset	
10	VccRx	3.3V Power Supply Receiver	2
11	SCL	2-Wire serial Interface Clock	
12	SDA	2-Wire serial Interface Data	
13	GND	Transmitter Ground (Common with Receiver Ground)	
14	Rx3p	Receiver Non-Inverted Data Output	
15	Rx3n	Receiver Inverted Data Output	
16	GND	Transmitter Ground (Common with Receiver Ground)	1
17	Rx1p	Receiver Non-Inverted Data Output	
18	Rx1n	Receiver Inverted Data Output	
19	GND	Transmitter Ground (Common with Receiver Ground)	1
20	GND	Transmitter Ground (Common with Receiver Ground)	1
21	Rx2n	Receiver Inverted Data Output	
22	Rx2p	Receiver Non-Inverted Data Output	
23	GND	Transmitter Ground (Common with Receiver Ground)	1
24	Rx4n	Receiver Inverted Data Output	1
25	Rx4p	Receiver Non-Inverted Data Output	
26	GND	Transmitter Ground (Common with Receiver Ground)	1
27	ModPrsl	Module Present	
28	IntL	Interrupt	
29	VccTx	3.3V power supply transmitter	2
30	Vcc1	3.3V power supply	2
31	LPMode	Low Power Mode	
32	GND	Transmitter Ground (Common with Receiver Ground)	1
33	Tx3p	Transmitter Non-Inverted Data Input	
34	Tx3n	Transmitter Inverted Data Output	
35	GND	Transmitter Ground (Common with Receiver Ground)	1

www.walsun.com

Professional high-speed optical transceiver module overall solution provider

36	Tx1p	Transmitter Non-Inverted Data Input	
37	Tx1n	Transmitter Inverted Data Output	
38	GND	Transmitter Ground (Common with Receiver Ground)	1

Notes:

1. GND is the symbol for signal and supply (power) common for QSFP28 modules. All are common within the QSFP28 module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.

2. VccRx, Vcc1 and VccTx are the receiving and transmission power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP28 transceiver module in any combination. The connector pins are each rated for a maximum current of 500mA.

V. Electrical Characteristics

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbol	Min.	Тур.	Max	Unit	Notes
Power Consumption	р			2.0	W	
Supply Current	Icc			600	mA	
	Tra	nsmitter				
Single-ended Input Voltage Tolerance	Vcc	-0.3		4.0	V	
Differential Input Voltage Swing	Vin,pp	180		1000	mVpp	
Differential Input Impedance	Zin	90	100	110	Ohm	1
Transmit Disable Assert Time				10	us	
Transmit Disable Voltage	Vdis	Vcc-1.3		Vcc	v	
Transmit Enable Voltage	Ven	Vee		Vee +0.8	v	2
	R	leceiver				
Differential Output Voltage Swing	Vout,pp	300		850	mVpp	
Differential Output Impedance	Zout	90	100	110	Ohm	3
Data output rise/fall time	Tr/Tf	28			ps	4

Walsun Technology Co., Ltd

www.walsun.com

HX4X-CM1M2x V1.0

LOS Assert Voltage	VlosH	Vcc-1.3	Vcc	V	5
LOS De-assert Voltage	VlosL	Vee	Vee +0.8	V	5

Notes:

- 1. Connected directly to TX data input pins. AC coupled thereafter.
- 2. Or open circuit.
- 3. Input 100 ohms differential termination.
- 4. These are unfiltered 20-80% values.
- 5. Loss of Signal is LVTTL. Logic 0 indicates normal operation; logic 1 indicates no signal detected.

VI. Optical Characteristics

The following optical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbol	Min.	Typical	Max	Unit	Notes
Lane wavelength (range)	$\lambda_{\rm C}$	840	850	860	nm	
Optical Spectral Width	Δλ			0.6	nm	
Average Launch Power each lane	P _{AVG}	-8.4		2.4	dBm	
Optical Extinction Ratio	ER	2			dB	
Transmitter and Dispersion Penalty	TDP			4.3	dB	
Transmitter OFF Output Power	Poff			-30	dBm	
Transmitter Eye Mask	Compliant	with IEEE8	02.3ae			
		Receiver				
Center Wavelength	$\lambda_{\rm C}$	840		860	nm	
Rx Sensitivity per lane	Sen.			-10.3	dBm	1
Input Saturation Power (overload)	Psat	2.4			dBm	
LOS Assert	LOSA	-26			dBm	
LOS De-assert	LOSD			-12	dBm	

www.walsun.com

Professional high-speed optical transceiver module overall solution provider

LOS Hysteresis	LOSH	0.5		dB	

Notes:

1. Measured with Light source 850nm, ER=2.0dB; BER<5.2*1E-5 @25.78Gbps, PRBS=2³¹ -1 NRZ.

VII. Digital Diagnostic Functions

The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified.

Parameter	Symbol	Min.	Max	Unit	Notes
Temperature monitor absolute error	DMI_ Temp	-3	3	°C	Over operating temp
Supply voltage monitor absolute error	DMI_VCC	-0.15	0.15	V	Full operating range
RX power monitor absolute error	DMI_RX	-3	3	dB	
Bias current monitor	DMI_ bias	-10%	10%	mA	
TX power monitor absolute error	DMI_TX	-3	3	dB	

VIII. Mechanical Dimensions

Figure2. Mechanical Outline

IX. Revision History

Version No.	Initiated	Revised contents	Release Date
V1.0	Andy Zhang	Preliminary datasheet	2018-09-20

X. Contact us

Walsun Technology Co., Ltd

2-5# Tongfufu Industrial Zone, Aiqun Road, Shiyan Street, Baoan District, Shenzhen, China PC. 518108

T. +86 0755-23007456 F. +86 0755-23007451 H. www.walsun.com

E. sales@walsun.com