

10Gb/s SFP+ Tunable DWDM 80km Transceiver HXSH-ALT81x

Features

- Up to 11.3Gb/s data links
- Monolithically integrated full C-band tunable transmitter and APD receiver
- 50 GHz ITU channel spacing with integrated wavelength locker
- Up to 80km on 9/125μm SMF
- Smart Features: Self-Negotiation, Remote DDM, Remote WL Locking
- Hot-pluggable SFP+ footprint
- Duplex LC/UPC type pluggable optical interface
- RoHS-10 compliant and lead-free
- Support Digital Monitoring interface
- Single +3.3V power supply
- Compliant with SFF+MSA and SFF-8472 SFF-8431, SFF-8690 and G.698.1
- Metal enclosure, for lower EMI
- Meet ESD requirements, resist 8KV direct contact voltage
- Case operating temperature

Commercial: $0 \sim +70^{\circ}$ C Extended: $-10 \sim +80^{\circ}$ C Industrial: $-40 \sim +85^{\circ}$ C

Applications

- DWDM 10GBASE-ZR/ZW & 10G
 Ethernet
- 10G CPRI, eCPRI
- DWDM CSTM-64
- 10G Fiber Channel

Part Number Ordering Information

Part Number	Data Rate (Gb/s)	Wavelength (nm)	Transmission Distance(km)	Temperature (°C) (Operating Case)
HXSH-ALT81C	10.3125	Refer to	80	0~70 commercial
HXSH-ALT81E	10.3125	wavelength selection	80	-10~80 extended
HXSH-ALT81I	10.3125		80	-40~85 Industrial

Wavelength Selection: C-band λc Wavelength Guide Pin Descriptions

Channel (xx)	Wavelength (nm)	Frequency (THZ)	Channel (xx)	Wavelength (nm)	Frequency (THZ)
(AA)	(IIIII)	(THZ)	(AA)	(IIII)	(1112)
13	1567.13	191.30	37	1547.72	193.70
Н3	1566.72	191.35	J7	1547.32	193.75
14	1566.31	191.40	38	1546.92	193.80
H4	1565.90	191.45	Ј8	1546.52	193.85
15	1565.50	191.50	39	1546.12	193.90
Н5	1565.09	191.55	J 9	1545.72	193.95
16	1564.68	191.60	40	1545.32	194.00
Н6	1564.27	191.65	K0	1544.92	194.05
17	1563.86	191.70	41	1544.53	194.10
H7	1563.45	191.75	K1	1544.13	194.15
18	1563.05	191.80	42	1543.73	194.20
Н8	1562.64	191.85	K2	1543.33	194.25
19	1562.23	191.90	43	1542.94	194.30
Н9	1561.83	191.95	K3	1542.54	194.35
20	1561.42	192.00	44	1542.14	194.40
10	1561.01	192.05	K4	1541.75	194.45
21	1560.61	192.10	45	1541.35	194.50
I1	1560.20	192.15	K5	1540.95	194.55
22	1559.79	192.20	46	1540.56	194.60
I2	1559.39	192.25	K6	1540.16	194.65
23	1558.98	192.30	47	1539.77	194.70
I3	1558.58	192.35	K7	1539.37	194.75
24	1558.17	192.40	48	1538.98	194.80
I4	1557.77	192.45	K8	1538.58	194.85

			W		
25	1557.36	192.50	49	1538.19	194.90
I5	1556.96	192.55	K9	1537.79	194.95
26	1556.55	192.60	50	1537.40	195.00
I6	1556.15	192.65	L0	1537.00	195.05
27	1555.75	192.70	51	1536.61	195.10
I7	1555.34	192.75	L1	1536.22	195.15
28	1554.94	192.80	52	1535.82	195.20
18	1554.54	192.85	L2	1535.43	195.25
29	1554.13	192.90	53	1535.04	195.30
I9	1553.73	192.95	L3	1534.64	195.35
30	1553.33	193.00	54	1534.25	195.40
J0	1552.93	193.05	L4	1533.86	195.45
31	1552.52	193.10	55	1533.47	195.50
J1	1552.12	193.15	L5	1533.07	195.55
32	1551.72	193.20	56	1532.68	195.60
J2	1551.32	193.25	L6	1532.29	195.65
33	1550.92	193.30	57	1531.90	195.70
J3	1550.52	193.35	L7	1531.51	195.75
34	1550.12	193.40	58	1531.12	195.80
J4	1549.72	193.45	L8	1530.72	195.85
35	1549.32	193.50	59	1530.33	195.90
J5	1548.91	193.55	L9	1529.94	195.95
36	1548.51	193.60	60	1529.55	196.00
J6	1548.11	193.65	M0	1529.16	196.05
Non-ITU	Peak wavelength	between 1529.10	6nm-1567.13r	ım	

I. Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Max	Unit	Notes
Storage Temperature	T_S	-40	85	°C	
Power Supply Voltage	V_{CC}	-0.5	3.6	V	
Relative Humidity (non-condensation)	RH	5	95	%	
Damage Threshold	TH_d	0		dBm	

II. Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit	Notes
		0		70		commercial
Operating Case	T_{OP}	-20		85	°C	extended
Temperature		-40		85		Industrial
Power Supply Voltage	V_{CC}	3.135	3.3	3.465	V	
Data Rate			10.3125	11.3	Gb/s	
Control Input Voltage High		2		Vcc	V	
Control Input Voltage Low		0		0.8	V	
Link Distance (SMF)	D			80	km	9/125um

III. General Description

Walsun'HXSH-ALT81x tunable transceiver is an integrated fiber optic transceiver that provides a high-speed serial link at signaling rates from 9.95 Gb/s to 11.3 Gb/s. The module complies with the 10 Gigabit Enhanced Small Form Factor Pluggable (SFP+) multisource agreement-MSA (SFF-8431) and SFF-8432, SFF-8690, SFF-8472. It complies with the ITU-T G.698.1 standard with 50 GHz channel spacing for SONET/SDH, IEEE DWDM 10GBASE-ZR for 80 km reach (Ethernet), and DWDM 10GFC for 80 km reach (Fiber Channel) applications.

The transceiver integrates the receiver and transmitter path on one module. The transceiver contains a C-band-tunable integrated Mach-Zehnder (MZ) laser, enabling data transmission over single-mode fiber through an industry-standard LC connector. On the receiver side, the 10 G/bps data stream is recovered from an APD/ trans-impedance amplifier, and passed to an output driver.

This module features a hot-pluggable electrical interface.

HXSH-ALT81x transceivers provide a unique enhanced digital diagnostic monitoring interface, which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, and received optical power and transceiver supply voltage. It also defines a sophisticated system of alarm and warning flags, which alerts end-users when particular operating parameters are outside of a factory set normal range.

The SFP+ MSA defines a 256-byte memory map in EEPROM that is accessible over a 2-wire serial interface at the 8bit address 1010000X (A0h). The digital diagnostic monitoring interface makes use of the 8bit address 1010001X (A2h), so the originally defined serial ID memory map remains unchanged.

IV. Pin Assignment and Pin Description

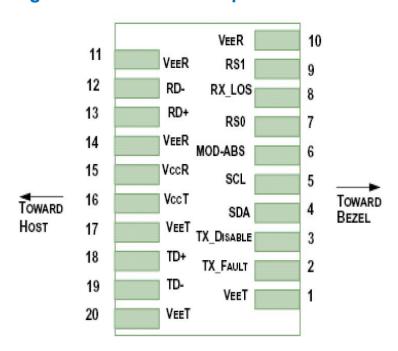


Figure 1. Diagram of host board connector block pin numbers and names

Pin	Symbol	Name/Description	Notes
1	V _{EET}	Transmitter Ground (Common with Receiver Ground)	1
2	T	Transmitter Fault.	2
3	T _{DIS}	Transmitter Disable. Laser output disabled on high or open.	3
4	SDA	2-wire Serial Interface Data Line	4
5	SCL	2-wire Serial Interface Clock Line	4

		w .	
6	MOD_ABS	Module Absent. Grounded within the module	4
7	RS0	Rate Select 0	5
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation.	6
9	RS1	No connection required	
10	V EER	Receiver Ground (Common with Transmitter Ground)	1
11	V _{EER}	Receiver Ground (Common with Transmitter Ground)	1
12	RD-	Receiver Inverted DATA out. AC Coupled	
13	RD+	Receiver Non-inverted DATA out. AC Coupled	
14	V _{EER}	Receiver Ground (Common with Transmitter Ground)	1
15	V _{CCR}	Receiver Power Supply	
16	V _{CCT}	Transmitter Power Supply	
17	$ m V_{EET}$	Transmitter Ground (Common with Receiver Ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	V _{EET}	Transmitter Ground (Common with Receiver Ground)	1

Notes:

- 1. Circuit ground is internally isolated from chassis ground.
- 2. TFAULT is an open collector/drain output, which should be pulled up with a $4.7k\Omega-10k\Omega$ resistor on the host board if intended for use. Pull up voltage should be between 2.0V to Vcc+0.3V. A high output indicates a transmitter fault caused by either the TX bias current or the TX output power exceeding the preset alarm thresholds. A low output indicates normal operation. In the low state, the output is pulled to <0.8V.
- 3. Laser output disabled on TDIS >2.0V or open, enabled on TDIS <0.8V.
- 4. Should be pulled up with $4.7k\Omega-10k\Omega$ on host board to a voltage between 2.0V and 3.6V. MOD_ABS pulls line low to indicate module is plugged in.
- 5. Internally pulled down per SFF-8431 Rev 4.1.
- 6. LOS is open collector output. It should be pulled up with $4.7k\Omega-10k\Omega$ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

V. Electrical Characteristics

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbol	Min.	Тур.	Max	Unit	Notes			
Power Consumption	р			2.8	W				
Supply Current	Icc			892	mA				
	Transmitter								
Single-ended Input Voltage Tolerance	Vcc	-0.3		4.0	V				
AC Common Mode Input Voltage Tolerance (RMS)		15			mV				
Differential Input Voltage Swing	Vin,pp	120		820	mVpp				
Differential Input Impedance	Zin	90	100	110	Ohm	1			
Transmit Disable Assert Time				10	us				
Transmit Disable Voltage	Vdis	Vcc-1.3		Vcc	V				
Transmit Enable Voltage	Ven	Vee		Vee +0.8	V	2			
	Re	eceiver							
Differential Output Voltage Swing	Vout,pp	350		850	mVpp				
Differential Output Impedance	Zout	90	100	110	Ohm	3			
Data output rise/fall time	Tr/Tf	28			ps	4			
LOS Assert Voltage	VlosH	Vcc-1.3		Vcc	V	5			
LOS De-assert Voltage	VlosL	Vee		Vee +0.8	V	5			
Power Supply Rejection	PSR	100			mVpp	6			

Notes:

- 1. Connected directly to TX data input pins. AC coupled thereafter.
- 2. Or open circuit.
- 3. Input 100 ohms differential termination.
- 4. These are unfiltered 20-80% values.
- 5. Loss of Signal is LVTTL. Logic 0 indicates normal operation; logic 1 indicates no signal detected.
- 6. Receiver sensitivity is compliant with power supply sinusoidal modulation of 20 Hz to 1.5 MHz up to specified value applied through the recommended power supply filtering network.

VI. Optical Characteristics

The following optical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbol	Min.	Typical	Max	Unit	Notes		
Transmitter								
Optical Wavelength	λο	1529.16		1567.13	nm	1		
Center Wavelength Spacing			50		GHz			
Optical Spectral Width	Δλ			1	nm			
Side Mode Suppression Ratio	SMSR	30			dB			
Average Optical Power	P_{AVG}	0		5	dBm	2		
Optical Extinction Ratio	ER	8.2			dB			
Transmitter and Dispersion Penalty	TDP			3	dB			
Transmitter OFF Output Power	POff			-30	dBm			
Frequency stability (BOL)	-1.5			1.5	GHz			
Frequency stability (EOL)	-2.5			2.5	GHz			
Transmitter Eye Mask		Com						
		Receiver						
Center Wavelength	λ_{C}	1270		1610	nm			
Receiver Sensitivity (Average Power)	Sen.			-23	dBm	3		
Input Saturation Power (overload)	Psat	-8			dBm			
LOS Assert	LOSA	-35			dB			
LOS De-assert	LOSD			-26	dBm			
LOS Hysteresis	LOSH	0.5			dBm			

Notes:

- 1. corresponds to approximately 0.4 nm.
- 2. Class 1 Laser Safety per FDA/CDRH and IEC-825-1 regulations.
- 3. Measured with Light source 1529.16~1567.13nm, ER>8.2dB; BER≤1E-12 @PRBS=231 -1 NRZ.

VII. Digital Diagnostic Functions

The following digital diagnostic characteristics are defined over the Recommended Operating Environment unless otherwise specified. It is compliant to SFF-8472 Rev10.2 with internal calibration mode. For external calibration mode please contact our sales staff.

Parameter	Symbol	Min.	Max	Unit	Notes
Temperature monitor absolute error	DMI_ Temp	-3	3	°C	Over operating temp
Supply voltage monitor absolute error	DMI_VCC	-0.15	0.15	V	Full operating range
RX power monitor absolute error	DMI_RX	-3	3	dB	
Bias current monitor	DMI_ bias	-10%	10%	mA	
TX power monitor absolute error	DMI_TX	-3	3	dB	

VIII. Mechanical Dimensions

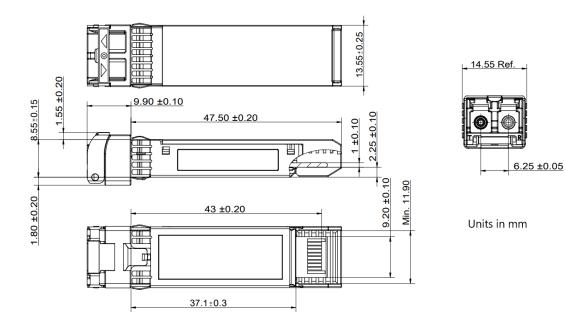


Figure 2. Mechanical Outline

IX. Wavelength Self-Negotiation

The tunable transceiver with the Self-negotiation function can automatically tune wavelengths within 5 minutes. It eliminates manual tuning tasks. Each transceiver can self-tune based only on its physical fiber connection. No input from host system or technician is needed. Integrated firmware in the transceivers determines the proper wavelengths to connect each port.

Wavelength self-negotiation specification

Parameters	Max time	Note
Wavelength switching completion time	3.5s	These times refer to the time from command issuance to wavelength availability
Wavelength self -tuning requirements	576s/96 channels	Two modules are docked and the laser is turned on without configuring the operating frequency.
When the BBU side DWDM optical		
module wavelength self-negotiation is		
successful, if Tx is turned off and then		
Tx is turned on, it is necessary to re-enter		
the wavelength self-negotiation:	NA	
Self-negotiation starts from the		
wavelength that was successfully		
negotiated last time; If the previous		
wavelength negotiation is not successful,		
start the negotiation from the first wave.		
After the wavelength negotiation of the		
DWDM module is successful, the		
successfully negotiated wavelength will		
be retained. After the next power outage	NA	
and startup, wavelength self-negotiation		
will be prioritized starting from the		
successfully negotiated wavelength.		
The optical module will perform normal		
detection during self-negotiation and	NA	
wavelength retention, such as LOS		

X. Revision History

Version No.	Initiated	Revised contents	Release Date
1.0	Andy Zhang	Preliminary datasheet	2014-06-11
1.1	Andy Zhang	Mechanical Change	2016-04-08
1.2	Andy Zhang	Update self-negotiation function	

XI. Contact us

Walsun Technology Co., Ltd

2-5# Tongfufu Industrial Zone, Aiqun Road, Shiyan Street, Baoan District, Shenzhen, China

T. +86 0755-23007456 F. +86 0755-23007451 PC. 518108

E. sales@walsun.com H. www.walsun.com