

10/25Gb/s SFP28 850nm 100m Transceiver HXSX-FL1R2x-1

Features

- Up to 25Gb/s data links
- 850nm VCSEL laser and PIN receiver
- Up to 100m on 50/125um MMF
- Hot-pluggable SFP footprint
- Support Digital Monitoring interface
- Class 1 laser safety certified
- Cost effective SFP28 solution, enables higher port densities and greater bandwidth
- RoHS-10 compliant and lead-free
- Single +3.3V power supply
- 2-wire interface for management specifications compliant with SFF 8472 digital diagnostic monitoring interface for optical transceivers
- All-metal housing for superior EMI performance
- Case operating temperature Commercial: $0 \sim +70^{\circ}$ C

Extended: $-10 \sim +80$ °C Industrial: $-40 \sim +85$ °C

Applications

- High-speed storage area networks
- Computer cluster cross-connect
- Custom high-speed data pipes

Part Number Ordering Information

Part Number	Data Rate (Gb/s)	Wavelength (nm)	Transmission Distance(m)	Temperature (°C) (Operating Case)
HXSX-FL1R2C	10/25	850	100	0~70 commercial
HXSX-FL1R2E	10/25	850	100	-10~80 Extended
HXSX-FL1R2I	10/25	850	100	-40~85 Industrial

I. Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Max	Unit	Notes
Storage Temperature	T_{S}	-40	85	°C	
Power Supply Voltage	V_{CC}	-0.5	3.6	V	
Relative Humidity (non-condensation)	RH	5	95	%	
Damage Threshold	TH_{d}	3.4		dBm	

II. Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit	Notes
		0		70		commercial
Operating Case	Тор	-10		80	°C	Extended
Temperature		-40		85		Industrial
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	
Data Rate			25		Gb/s	
Control Input Voltage High		2		Vcc	V	
Control Input Voltage Low		0		0.8	V	
Link Distance (MMF)	D			100	m	50/125um

III. General Description

Walsun'HXSX-FL1R2x 25Gb/s SFP28 transceiver consists of five sections: the LD driver, the limiting amplifier, the digital diagnostic monitor, the VCSEL laser and the PIN photo-detector. The module data link up to 100m in 50/125um multimode optical fiber.

The SFP28 SR module electrical interface is compliant to SFI electrical specifications. The transmitter input and receiver output impedance is 100 Ohms differential. Data lines are internally AC coupled. The module provides differential termination and reduce differential to common mode conversion for quality signal termination and low EMI. SFI typically operates over 200 mm of improved FR4 material or up to about 150mmof standard FR4 with one connector.

The transmitter converts 25Gbit/s serial PECL or CML electrical data into serial optical data compliant with the 25GBASE-SR standard. An open collector compatible Transmit Disable

 (Tx_Dis) is provided. Logic "1" or no connection on this pin will disable the laser from transmitting. Logic "0" on this pin provides normal operation. The transmitter has an internal automatic power control loop (APC) to ensure constant optical power output across supply voltage and temperature variations. An open collector compatible Transmit Fault (Tx_Fault) is provided. Tx_Fault is module output contact that when high, indicates that the module transmitter has detected a fault condition related to laser operation or safety. The Tx_Fault output contact is an open drain/collector and shall be pulled up to the Vcc_Host in the host with a resistor in the range $4.7\text{-}10~k\Omega$. $Tx_Disable$ is a module input contact. When $Tx_Disable$ is asserted high or left open, the SFP28 module transmitter output shall be turned off. This contact shall be pulled up to VccT with a $4.7~k\Omega$ to $10~k\Omega$ resistor

The receiver converts 25Gbit/s serial optical data into serial PECL/CML electrical data. An open collector compatible Loss of Signal is provided. Rx_LOS when high indicates an optical signal level below that specified in the relevant standard. The Rx_LOS contact is an open drain/collector output and shall be pulled up to Vcc_Host in the host with a resistor in the range 4.7-10 k Ω , or with an active termination. Power supply filtering is recommended for both the transmitter and receiver. The Rx_LOS signal is intended as a preliminary indication to the system in which the SFP28 is installed that the received signal strength is below the specified range. Such an indication typically points to non-installed cables, broken cables, or a disabled, failing or a powered off transmitter at the far end of the cable.

IV. Pin Assignment and Pin Description

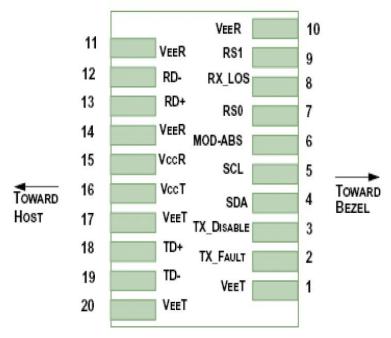


Figure 1. Diagram of host board connector block pin numbers and names

PIN	Name	Name/Description	Notes
1	VeeT	Transmitter Ground	1
2	TX_Fault	Transmitter Fault	
3	TX_Disable	Transmitter Disable; Turns off transmitter laser output	
4	SDA	Two wire serial interface Data Line (LVCMOS-I/O) (MOD-DEF2)	2
5	SCL	Two wire serial interface Clock Line (LVCMOS-I/O) (MOD-DEF1)	2
6	MOD_ABS	Module Definition, Grounded in the module	
7	RS0	Rx Rate Select:	
8	RX_LOS	Receiver Loss of Signal Indication Active LOW	
9	RS1	Transmitter Rate Select (not used)	
10	VeeR	Receiver Ground	1
11	VeeR	Receiver Ground	1
12	RD-	Receiver Inverted Data Output	
13	RD+	Receiver Data Output	
14	VeeR	Receiver Ground	1
15	VccR	Receiver Power - +3.3V	
16	VccT	Transmitter Power - +3.3 V	
17	VeeT	Transmitter Ground	1
18	TD+	Transmitter Non-Inverted Data Input	
19	TD-	Transmitter Inverted Data Input	
20	VeeT	Transmitter Ground	1

Notes:

- 1. Module ground pins GND are isolated from the module case.
- 2. Shall be pulled up with 4.7K-10Kohms to a voltage between 3.15V and 3.45V on the host board.

V. Electrical Characteristics

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbol	Min.	Тур.	Max	Unit	Notes		
Power Consumption	p			1.0	W			
Supply Current	Icc			300	mA			
	Transmitter							
Single-ended Input Voltage Tolerance	Vcc	-0.3		4.0	V			
common mode voltage tolerance		15			mV			
Differential Input Voltage Swing	Vin,pp	180		700	mVp p			
Differential Input Impedance	Zin	90	100	110	Ohm	1		
Transmit Disable Assert Time				10	us			
Transmit Disable Voltage	Vdis	Vcc-1.3		Vcc	V			
Transmit Enable Voltage	Ven	Vee		Vee +0.8	V	2		
	Re	ceiver						
Single-ended Input Voltage Tolerance	Vec	-0.3		4.0	V			
Differential Output Voltage Swing	Vout,pp	300		900	mVp p			
Differential Output Impedance	Zout	90	100	110	Ohm	3		
Data output rise/fall time	Tr/Tf	9.5			ps	4		
LOS Assert Voltage	VlosH	Vcc-1.3		Vcc	V	5		
LOS De-assert Voltage	VlosL	Vee		Vee +0.8	V	5		

Notes:

- 1. Connected directly to TX data input pins. AC coupled thereafter.
- 2. Or open circuit.
- 3. Input 100 ohms differential termination.
- 4. These are unfiltered 20-80% values.
- 5. Loss of Signal is LVTTL. Logic 0 indicates normal operation; logic 1 indicates no signal detected.

VI. Optical Characteristics

The following optical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbol	Min.	Typical	Max	Unit	Notes		
Transmitter								
Center Wavelength	λ_{C}	840	850	860	nm			
Optical Spectral Width	Δλ			0.6	nm			
Average Optical Power	P_{AVG}	-8.4		2.4	dBm	1		
Optical Extinction Ratio	ER	2.0			dB	2		
Transmitter OFF Output Power	Poff			-30	dBm			
Transmitter and Dispersion Penalty	TDP			4.4	dB			
Optical Return Loss Tolerance	ORLT			12	dB			
Transmitter Eye Mask		Compliant	with IEEE80	02.3ae				
Receiver								
Center Wavelength	λ_{C}	840	850	860	nm			
Receiver Sensitivity in average power @10.3125Gbps	Sen.			-10	dBm	3		
Receiver Sensitivity in average power @25.78125Gbps	Sen.			-10.3	dBm	4		
Stressed Sensitivity (OMA)				-5.2	dBm	4		
Input Saturation Power (OMA)	Psat	3			dBm			
LOS Assert	LOSA	-20			dBm			
LOS De-assert	LOSD			-11	dBm			
Optical Return Loss	ORL	12			dB			
LOS Hysteresis	LOSH	0.5			dB			

Notes:

1. Class 1 Laser Safety per FDA/CDRH and IEC-825-1 regulations.

- 2. ER>3dB @10.3125Gbps, ER>2dB @25.78125Gbps
- 3. Measured with Light source 850nm, ER=3.0dB; BER≤1E-12 @10.3125Gbps, PRBS=2³¹ -1 NRZ.
- 4. Measured with Light source 850nm, ER=2.0dB; BER≤5E-5 @25.78125Gbps, PRBS=2³¹ -1 NRZ.

VII. Digital Diagnostic Functions

The following digital diagnostic characteristics are defined over the Recommended Operating Environment unless otherwise specified. It is compliant to SFF-8472 Rev10.2 with internal calibration mode. For external calibration mode please contact our sales staff.

Parameter	Symbol	Min.	Max	Unit	Notes
Temperature monitor absolute error	DMI_ Temp	-3	3	°C	Over operating temp
Supply voltage monitor absolute error	DMI_VCC	-3	3	%	Full operating range
RX power monitor absolute error	DMI_RX	-3	3	dВ	
Bias current monitor	DMI_ bias	-10	10	%	
TX power monitor absolute error	DMI_TX	-3	3	dB	

VIII. Mechanical Dimensions

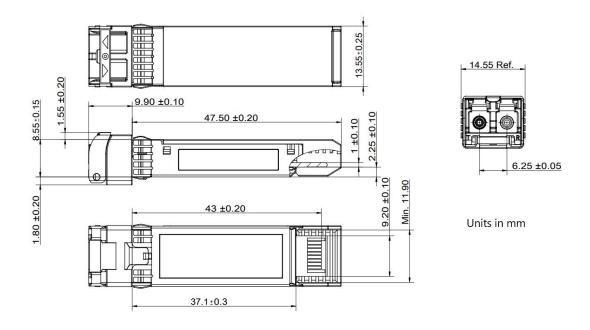


Figure 2. Mechanical Outline

IX. Revision History

Version No.	Initiated	Revised contents	Release Date
1.0	Andy Zhang	Preliminary datasheet	2018-05-22

X. Contact us

Walsun Technology Co., Ltd

2-5# Tongfuyu Industrial Zone, Aiqun Road, Shiyan Street, Baoan District, Shenzhen, China

T. +86 0755-23007456 F. +86 0755-23007451 PC. 518108

E. sales@walsun.com H. www.walsun.com